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Abstract

We consider how the methods of geometric morphometrics (GM) might combine with functional
simulations using finite elements analysis (FEA). In particular we are concerned with how the de-
formations arising from FEA might be compared and visualized using GM. To these ends we apply
these methods to a study of coronal plane forces applied to a model of an armadillo femur. We
simulate the stance phase in the hind limb where the femur is subject to bending strains due to
longitudinal compressive as well as abduction loads on the greater trochanter. We use this model
to examine the hypothesis that muscles attaching to the third trochanter can reduce these bending
strains in the loaded femur. The analysis uses standard finite element methods to produce strain
maps and examine the strains at 200 point locations on the femur, but we also use the locations of
the 200 points to run novel geometric morphometric analyses to assess the gross deformation of the
model under different loadings. These provide insights into the application and usefulness of geo-
metric morphometric methods in interpreting the results of finite element analyses. With further
mathematical, engineering and statistical development the combination of FEA and GMM should
open up new avenues of investigation of skeletal form and function in evolutionary biology.

Introduction
In this paper we consider how studies of skeletal performance using
finite elements analysis (FEA) might be compared using geometric
morphometric (GM) approaches. After considering what GM can and
cannot do in this context, we illustrate and explore the joint use of these
approaches through an example study of femoral form and function
in an armadillo. GM methods alone can be used to relate variations
in skeletal form to aspects of function by assessing how the form of
a configuration of landmarks taken on the skeletal part covaries with
functionally interesting variables. Thus, in a study of long bones, how
skeletal form covaries with e.g. body mass, or limb length, or run-
ning speed etc. can be understood and compared through e.g. regres-
sion of form on relevant variables. However, this approach does not
directly relate skeletal form to performance under loading. For this,
simulated functional loading using finite elements analysis (FEA) with
subsequent measurement and comparison of skeletal performance is re-
quired. One interesting aspect of performance is how an object deforms
when loaded.

In continuum mechanics the term “deformation” means both rigid
body motion (translation and rotation) together with changes in form
(size and shape). Here, however we use the common definition of “de-
formation”, which refers to changes in size and shape of an object but
not rigid body motions. This is a more familiar usage for workers in
GM. In engineering how the size and shape of a loaded elastic body
responds to loads is commonly measured using strains (e.g. principal
strains, Von Mises strains). These are used to predict failure and of-
ten in biology to assess and compare performance of either the same
model under different loadings or, different models under similar load-
ings (e.g. in studies of the skeletal response to loads, Gupta et al. 1973;
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Hart et al. 1992; Korioth and Hannam 1994; Vollmer et al. 2000; Kool-
stra and van Eijden 2005; Moazen et al. 2009; Rayfield 2005; Ichim et
al. 2007; Strait et al. 2007, 2009; Kupczik et al. 2007;Wroe et al. 2007).
Strains sampled at several points may be compared singly or submit-
ted to multivariate analysis (e.g. Gröning et al. 2012; Parr et al. 2012).
However this leads to an incomplete analysis, and no proper statistical
framework yet exists to compare strain fields (Bookstein, 2011; Weber
et al., 2011) or to account for the effects of uncertainties in modelling
on computed strains. Strains and strain maps are also frequently used
as a visual guide to large scale deformations such as long bone bending
or cranial “twisting” that arises from loading. Strain magnitudes and
directions describe deformations at each point but are not well suited to
assessment of large scale patterns of deformation (see O’Higgins et al.
2011 for more detail). An alternative is to assess large scale deforma-
tions by describing the changes in the form of a landmark configuration
on a body before and after loading. This shares much in common with
the application of GM approaches to kinematic analyses of motion us-
ing temporal sequences of landmark configurations, representing e.g.
changing limb postures. At each temporal sampling point, the form of
the configuration is recorded and the full set of configurations sampled
over the period of interest is submitted to GM analysis. The analysis
then focuses on comparing trajectories of form change over time. Slice
(1999) and Adams and Cerney (2007) have shown how this approach
can facilitate quantification and analysis of complex motions involving
many joints or complex motion at few joints (e.g. the jaw in chewing).
It is equally applicable to kinematic analyses of deformable surfaces or
volumes such as the face during expression or speech (O’Higgins et al.,
2002), or to a body deforming under loads such as is simulated in FEA.
There are subtleties to such an analysis that concern: registration (i.e.,
if and how we scale, translate and rotate), its meaning and effects, and
how motions are broken down into sequential landmark configurations
(Slice, 2003).
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Geometric morphometric analysis and FEA

Figure 1 – The armadillo femur models showing the constraints (stars), forces applied
(arrows) to the head (H), greater trochanter (GT), and third trochanter (T3). Also shown is
the finite element model with; the 200 landmarks placed on the surface, and the three
possible directions for the third trochanter load.

While it is unlikely that large scale deformations of skeletal parts
drive either evolutionary or ontogenetic adaptations, differences can be
informative from the perspective of analyses of anatomical-functional
correlations (e.g Milne and O’Higgins 2012). Further, GM analyses of
how a skeletal structure deforms can provide a useful adjunct to sensit-
ivity and validation studies where subtle differences are not readily ap-
preciated from strains sampled at a few locations or from strain maps
(Gröning et al., 2011; Fitton et al., 2012). It should be noted that GM
approaches to the comparison of deformations do not have the same
aim as strain based comparisons; they are not directed at predicting
failure. Neither can transformation grids describe the actual deform-
ation of tissue between landmarks. This is because the method of in-
terpolation does not reflect the actual stretching or compression of the
physical material. Of course, this same issue applies to GM studies
of skeletal ontogeny and evolution where grids serve as a device for
visualisation of changes in size and shape of landmark configurations
rather than as a representation of the biological processes underlying
bone growth or evolutionary transformation; it facilitates visualisation
of pattern, not process, by interpolating the changes in form of a land-
mark configuration to the space between and in the vicinity of the land-
marks. Additionally, the landmarks themselves, unless they comprise
all of the nodes of all of the finite elements, incompletely describe the
deformation (O’Higgins et al., 2011). It should be borne in mind that,
as with studies of e.g. growth or evolution, different landmark con-
figurations will give rise to different distances between forms and so
adequate design of the landmark configuration is important (Oxnard
and O’Higgins, 2009).

We demonstrate the application of GM to the results of FEA in a
study of the femur of an armadillo (Chaetophractus villosus). The
femur presents a large third trochanter (T3; Fig 1), a common feature
of xenarthrans, that varies in position along the shaft being more distal
in larger animals. Many studies have highlighted how human femoral
bending occurs in response to longitudinal compressive loads acting
through the femoral head and abductor loads acting on the greater
trochanter, and how loads simulating tension in the iliotibial tract have
an “unbending” effect (using polarised light methods and beam theory,
Pauwels 1980; Rybicki et al. 1972; finite element methods, Taylor et
al. 1996; free body analysis, Duda et al. 1997). Similarly, Milne et al.
(2011) suggested that muscles attached to T3 in xenarthrans act to re-
duce coronal plane bending stress in the armadillo femur. Recently this
suggestion has been supported by a study (Milne and O’Higgins, 2012)

that compared the “unbending” effect of muscles attached to T3 in large
and small xenarthrans. The background to this work is presented here
to illustrate how GM approaches can be usefully applied to interpreta-
tion of changes in skeletal form arising from simulated loading in FEA.

We carry out FEA to assess the function of the third trochanter and
the impact of variations in loading and segmentation of internal archi-
tecture. We also compare the performance of a solid model with that of
a model with more detailed internal structure because it is not straight-
forward to delineate cortical from trabecular bone in CT scans, espe-
cially in fossils which we intend to include in subsequent work. Us-
ing GM approaches, we show the effects of varying the magnitudes of
simple and combined loads on the resulting strain maps and on large
scale deformations of solid and hollow femoral models. These analyses
allow us to assess the extent to which gluteus maximus and tensor fas-
cia latae muscles attached to the third trochanter reduce bending.

Methods
Model building, sensitivity to modelling decisions and loading sim-
ulation. One femur from a hairy armadillo (Chaetophractus villosus)
was CT scanned (1 mm slices with a resolution of 0.1145mm). The CT
stack was segmented (i.e the grey levels representing bone were used to
isolate bone material in each CT slice in preparation for building a 3-D
model of the bone) in AMIRA 4.1.1 (Mercury Computer Systems Inc.,
USA). The resolution of the scan meant that the cancellous bone in the
epiphyses could not be segmented in any detail. In consequence the
initial model was mostly solid at the epiphyses but retained the empty
medullary space in the shaft. Extraneous material, including remnants
of the cruciate ligaments, was removed. Following sensitivity studies
that showed little difference in resulting strains or large scale deforma-
tion with voxel side length varying between 0.2 and 0.8 mm, the Amira
mesh was resampled to make a model with cubic voxels of side 0.4
mm. This model was then re-segmented to fill the hollow in the shaft
with solid material. The 3D volume data for the two models were ex-
ported as bitmap stacks and then converted to 8-noded linear brick fi-
nite element meshes by direct voxel conversion. The resulting models
had 83627 (hollow) and 86914 (solid) elements. It has been shown in
previous work that our voxel based approach achieves almost identical
results to those obtained using other element types (Liu et al., 2011).

The finite element analyses (FEA) were performed using the non-
commercial FEA software VOX-FE (Fagan et al. 2007; numerically
validated in Liu et al. 2011; release will be announced on http://www2.
hull.ac.uk./science/cmet.aspx). The models were assigned isotropic
material properties within the range of published values for bone (17
GPa for Young’s modulus and a Poisson’s ratio of 0.3) although ma-
terial properties vary from location to location (are heterogeneous, e.g.
Dechow et al. 1993). This is justified on the grounds that Panagioto-
poulou et al. (2012) have shown that in an elephant femur, although
strains predicted by an homogeneous model less well matched experi-
mental data than those from an heterogeneousmodel, themismatchwas
principally in the mean magnitude of predicted strains and, to lesser
degree, in the pattern of deformation (relative strain values). Thus, to
predict the overall pattern, but not magnitude of deformation, the het-
erogeneity typical of long bones appears less important.

To approximate physiological conditions, the models were con-
strained in the x, y, and z directions at an area of the distal surface of the
medial femoral condyle, and also in the x and y directions on the me-
dial surface of the femoral head, thus enabling the head to move up or
down under load. These constraints were chosen because, in Xenarthra
the medial condyle bears most of the load at the knee (Koneval 2003;
Milne et al. 2011 and references therein), and the sliding constraint on
the femoral head represents the pelvis, which prevents the femoral head
from being displaced medially. Simple loads (Fig. 1) were used to as-
sess model performance, thus a compressive force representing body
mass and the net action of thigh musculature was applied to the up-
per surface of the femoral head, and that force was directed through the
centre of the constrained area of the medial femoral condyle. A force
representing the lesser gluteal (abductor) muscles was applied to the
superolateral part of the greater trochanter and that force was directed
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superomedially, in the coronal plane at an angle of 45 degrees above
the horizontal (Fig. 1). The size of the head and greater trochanter
loads was 60 and 120 newtons, equivalent to the effects of approxim-
ately twice and 4 times the body weight of the armadillo. The number
of constrained or loaded nodes was chosen to mirror normal anatomy
while keeping the number of such nodes small, about 60 for each con-
straint and load. The models were iteratively solved to equilibrium on
a PC.

Two hundred landmarks were placed on the surfaces of the models
using Amira (Fig. 1). The landmarks were chosen to provide even and
fairly dense coverage of the whole bone. There is no issue of equi-
valence of landmarks between load cases as the landmarks are tied to
the bone mesh and move with it as it deforms. Further in a recent pa-
per comparing the function of armadillo femora (Milne and O’Higgins,
2012) we have shown that the results of size and shape analyses using
40 “homologous” landmarks to compare femoral performance are very
similar to those from the 200 landmarks used to assess deformation of
single femora. This finding is consistent with a sensitivity analysis (in
Fitton et al. 2012) that found, in reducing from 300 to 70 landmarks,
little effect on performance analyses relating to cranial loading. This is
reassuring in the context of the present study but it should be borne in
mind that similar considerations apply to landmark choice in analyses
of performance as apply in relation to analyses of form (Oxnard and
O’Higgins, 2009) and additional internal landmarks might bring addi-
tional information into the analyses. After each load case was run, the
principal strains at, and the new coordinates of, each landmark were ex-
tracted. For each model 5 load cases were run: 60 or 120 newtons at the
head or greater trochanter and 60 newtons at both the head and greater
trochanter (GT). Subsequently, additional loads were applied to T3.
Since muscle force vectors are estimated from dissections (Koneval,
2003) and observations of articulated skeletons, three different force
directions were applied to the third trochanter to assess the sensitivity
of the model to force direction (Fig. 1).

Maps of either Von Mises or surface principal strains were also
produced. Von Mises strains reflect the magnitude of deformation at
each point and require just one diagram to map them. They simplify
the presentation of results but information about the nature of strains,
whether they are tensile or compressive, requires maps of the relev-
ant principal strains. Surface Von Mises strains were mapped from the
analysis of load doubling and for the comparison of hollow and solid
models, because they succinctly summarise the patterns of strain dens-
ity. Surface principal strains were mapped from the analysis of mul-
tiple loads because the diagrams show whether the strain at each point
is tensile or compressive and so facilitate interpretation of large scale
deformation of the model.

Geometric morphometric analysis of deformations. The 3D co-
ordinates of the 200 landmarks in the unloaded model and each load-
case were submitted to geometric morphometric (GM) analysis to as-
sess global deformations. The most common approach to GM analysis
focuses on shape; it scales landmark configurations to unit centroid
size; the square root of the sum of squared landmark distances from
their centroid. Next, shape variables are computed by translating
and rotating (registering) all configurations to minimise the sum of
squared landmark distances with respect to the mean(Dryden and Mar-
dia, 1998). Differences in shape are expressed by Procrustes distances,
computed as the square root of the sum of squared differences in shape
variables between configuration pairs. Differences in size are expressed
by differences in centroid size, the square root of the sum of deviations
of the landmarks from the centroid.

However, in this application to the comparison of results of FEA, an
approach that simultaneously accounts for differences in both size and
shape is required. This is because, under loading the body deforms and
landmarks displace. Differences in both size and shape are consequent
on the applied loads; in terms ofmechanics it makes little sense to parti-
tion form changes into these components or to weight them differently.
Therefore, in previous applications of GM methods (O’Higgins et al.,
2011; Gröning et al., 2011; Fitton et al., 2012) principal components
analysis of the shape variables plus the log of centroid size (Procrustes

Figure 2 – Simple loadings on the head or greater in hollow and solid models. Strain
maps showing the e�ects of head or greater trochanter loads of 60 and 120 newtons. The
pairs of images allow comparison of the strain patterns in hollow and solid models. Von
Mises strain 0 to 0.4 microstrains.

form analysis) was employed to assess how loadings impact on both
model size and shape. However, logging of centroid size rescales this
component relative to shape in such a way that size differences result-
ing from loading are given a relatively lower weight than would be the
case if the initial scaling had not been carried out.

An alternative that preserves the weighting of both is to omit the
scaling step prior to registration and carry out analyses using the res-
ulting “size and shape” variables (Dryden and Mardia 1998; Dryden et
al. 2007. Note the resulting variables combine size and shape informa-
tion and in contrast to Procrustes Form analysis do not comprise shape
variables plus a size variable). While omission of the scaling step does
not lead to specimens being represented in the well-behaved Kendall’s
shape space that results from Procrustes superimposition, the fact that
the deformations resulting from FEA are very small mitigates the im-
pact of variations in size on such things as the estimation of means and
covariances. Further, a consequence of omitting the scaling step is that
resulting distances between loaded and unloaded forms might reflect
pure shape or pure size, or some mix of size and shape depending on
the directions of the vectors connecting the models in the resulting size
and shape space. While this may be undesirable in some applications
it is consistent with the idea that loadings can produce changes in size
and/or shape. Thus, conceivably, but impractically, loads could be ap-
plied everywhere within and over an object to make it isometrically
smaller or larger, but more often loads have some effect on size and
some on shape. In order therefore to assess the effects of loads, size
and shape changes need to be considered together.

Here, we use this approach because it is better justified from consid-
erations of the mechanics, but the consequences on the eventual results
are imperceptible with regard to relative distances among load cases
and visualisations of aspects of deformation captured by PCs when
compared to the results of Procrustes form (shape plus log centroid
size) or shape analyses. This lack of difference between approaches
is attributable to the very small differences in size relative to shape
that arise from our FEAs. Thus, we carry out a “size and shape” ana-
lysis by translating and rotating but not scaling landmark configurations
to minimise the sum of squared distances among landmarks. This ri-
gid body fitting of landmark configurations from unloaded and loaded
forms (see O’Higgins et al. 2012) produces “size and shape” variables.
Size and shape distances among unloaded and loaded models are com-
puted and PCA of size and shape variables is carried out to comple-
ment the strain based analyses. The aspects of size and shape variation
described by each PC can be visualised, facilitating interpretation of
PC plots in terms of deformations of the models. We visualise these
deformations as warped rendered surface models together with a trans-
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Figure 3 – GM analysis of simple and combined loads. PC1 (95.9%) and PC2 (4.1%) from a size and shape space analysis of the coordinates of the 200 landmarks. The shapes to the left
and right show the shape change in the model associated with PC1, from the unloaded state on the right to the loaded state with the deformed grid on the left. These deformations are
exaggerated by a factor approximately 100 to aid visualisation. Diamond = unloaded, square = hollow, star = solid models. Note that two PCs are su�cient to describe the aspects of
large scale deformation in this analysis because only two forces are applied, This results in two modes of deformation, albeit with varying relative magnitude among load cases, which
are described by two PCs.

formation grid computed using a triplet of thin plate splines (one for
displacements in each of x, y and z; Dryden and Mardia 1998). As
noted earlier, the deformation of the grid is interpolated from the de-
formation of the landmark configuration and so only approximates the
actual deformation of the model between the landmarks; in this sense
it is quite unsuited to studying the elastic behaviour of the bone mater-
ial. Rather, the grid is a device to facilitate visual interpretation of the
large scale aspects of deformation of the landmark configuration.

Specific analyses using both strains and GM methods assessed: 1.
Differences between the deformations of the solid and hollow mod-
els. 2. The effects of doubling of loads. 3. The effects of combining
loads. 4. The impact of muscles acting on the third trochanter on “un-
bending” of the femoral shaft.

Results

Di�erences between the deformations of the solid and
hollow models

Strain maps for the twomagnitudes of head and greater trochanter (GT)
loads (Fig. 2) show very similar results for the hollow and solid models.
They are hard to distinguish by eye. Quantitatively, the magnitudes of
tensile and compressive strains at the 200 sampled nodes are slightly
lower on average for the solid than the hollow model. The ratios of
the mean strains at these 200 point locations in solid compared to the
hollow models are all slightly less than one (60 N loads, tensile: head
0.992, GT 0.955; compressive: head 0.959, GT 0.970; for 120 N loads
these proportions are exactly the same as for the 60 N loads). Further,
the strain ratios between models at each sampled node closely approx-
imate the ratios of mean strains (e.g. 60 N loads, mean solid/hollow
strain ratio: tensile: head 0.990, GT 0.948; compressive: head 0.984,
GT 0.962). These findings support the similarities seen in the strain
maps (Fig. 2) and indicate that the principal difference between hol-
low and solid models is that the solid is a little stiffer but deforms like
the hollow; a finding that echoes a similar result in lizard crania (Parr
et al., 2012).

When the 200 landmark co-ordinates for the unloaded and the five
load conditions are submitted to geometric morphometric analysis the
resulting plot of PCs 1 and 2 (accounting for 95.9% and 4.1% of the
shape variation respectively) shows that: the solid models are slightly
stiffer than the hollow in that they are less distant from the unloaded
model (Fig. 3). Size and shape distances indicate that the solid model
deforms less than the hollow (ratio solid/hollow 0.965 under the same
head load, and 0.964 for the GT load).

The e�ects of doubling of loads

As expected, the strains at the 200 landmarks resulting from the 120
newtons loads are almost exactly twice the value of those that result
from 60 newtons loads (all within 0.18%). Likewise, when the size
and shape distances are compared between models with identical con-
straints and load vectors, these double as load magnitudes are doubled.
Thus for the hollow model with head load alone the size and shape dis-
tance between the unloaded and 60 N (0.1729894666) models is half
of that between the unloaded and 120 N loaded model (0.3459819139;
ratio is 2.00001723). The same applies to centroid size (cs) with the
change between the unloaded and the 60 N loaded models being very
close to half that of the 120 N (hollow model ratios of 120 N to 60 N
loadcases: head load = 1.998; GT 2.002). From Fig. 3, it is also ap-
parent that doubling either load results in doubling of the lengths of the
vectors between the unloaded and loaded models.

Figure 4 – The e�ect of third trochanter loads. Strain maps of the armadillo femur under
combined head and greater trochanter (H+GT) loads, and with an additional load on the
third trochanter (H+GT+T3). All the loads applied are 60 N. Both compressive (-0.5 to 0
microstrains) and tensile (0 to 0.4 microstrains) strains are shown for the hollow and solid
models.
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Figure 5 – The addition of third trochanter loads. PCs 1 & 2 (97.1% & 2.3%) from a GM analysis of hollow (squares) and solid (stars) models. First a head load is applied (Vector H), then a
greater trochanter load is added (GT), and then the third trochanter load is added (B, labelled as T3). The points A, B and C represent the deformations due to the three di�erent force
directions applied to the third trochanter of the unloaded model (diamond). The deformed models with grids t indicate the changes in size and shape represented by PC1 (left and right),
and PC2 (below the plot). These deformations are exaggerated by a factor of approximately 100 to aid visualisation.

The e�ects of combining loads

The deformation caused by the combined load of 60 newtons on both
the head and the greater trochanter is the same as the vector sum of
the deformations caused by the two loads independently. This is il-
lustrated by the parallelogram evident in Fig. 3. It is made up of the
solid lines connecting the unloaded model and each of the 60 N load-
cases and the dotted line connecting each of these and the combined
load model. The ratios of the lengths of the short and long sides are
respectively; (GT load) 0.999964, 0.999978 for the hollow model and
1.000013, 0.999993 for the solid model.

The impact of muscles acting on the third trochanter on
“un-bending” of the femoral shaft

From Fig. 2 and 3, it is evident that both head and greater trochanter
loads result in medial bending of the femur. From a comparison of Fig.
2 and 3 it is clear that head and greater trochanter loads combine to
produce more large scale bending than either force alone. When addi-
tional forces are applied to T3 the bending strains in the femoral shaft
are reduced. Fig. 4 shows the compressive and tensile strains in mod-
els with head and greater trochanter loads compared with models with
additional third trochanter loads. The addition of T3 loads results in
reductions in tensile strains on the lateral side, and compressive strains
on the medial side of the model. The plot of PCs 1 and 2 of an analysis
of all three loadcases (Fig. 5) shows that while the head and GT loads
cause increased bending in the model, the T3 loads reduce that bend-
ing (Fig. 5). Fig. 5 also shows that the three different force directions
for the T3 load (A, B and C) all reduce bending in the femoral models.
The transformation grids in Fig. 5 show that the aspects of deformation
represented by PC1 predominantly consist of large scale bending of the
femoral shaft, while those represented by PC2 are principally deform-
ations localised to the greater and third trochanters, with no apparent
bending of the femoral shaft.

Discussion
We have simulated femoral loading, assessing the impact of loads,
singly and then in combination, on deformation. The key underpin-
ning technologies included imaging, image reconstruction and finite
elements analysis which are commonly employed in functional ana-
lyses of skeletal elements (e.g. Hart et al. 1992; Kupczik et al. 2007;
Wroe et al. 2007; Strait et al. 2009). Additionally we have applied some
methods from geometric morphometrics to consider and compare large
scale deformations (O’Higgins et al., 2011).

This study provides the opportunity to show how geometric morpho-
metric methods relate to the more conventional engineering approach
for quantitatively describing and comparing deformations; how they
perform and inform. The situation whereby doubling of loads results
in doubling of deformation is well known for principal strains (Fig. 2)
and this linear relationship between load and deformation is also ap-
parent using GM approaches (size shape distances from the unloaded
model). Like strains, the empirically derived ratios of distances arising
from doubling of loads are not exactly 2 but are very close, the error be-
ing most likely attributable to computational imprecisions in FEA and
subsequent GM analyses. This similarity between the scaling of size
and shape distances and strains and is of course to be expected, since
both methods assess changes in size and shape, albeit at very different
scales. It is worth noting that size and shape distances and strains also
scale linearlywithYoung’s elasticmodulus (ε; ameasure ofmodel stiff-
ness) and length. Thus halving ε doubles the size and shape distance
between unloaded and loaded forms as does halving length (e.g. by iso-
metrically scaling the form according to centroid size). These scaling
relationships have a practical application in that a single load case can
be used to visualise the range of deformations or estimate new deform-
ations when constraints and load application points are kept constant
but load magnitude, ε or length (“size”) are varied. This avoids the
need to run multiple alternative FEAs.

Since doubling of loads is effectively the combination of a load with
itself, when two or more different loads are applied to the model, the
resulting deformation is represented in the size and shape space as the
vector sum of the deformations caused by those loads applied individu-
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ally. Thus, in Fig. 3, the deformations caused by the individual loads
form the sides of a parallelogram and the deformation of the combined
load is represented by the diagonal of the parallelogram. This demon-
strates that, as with strains, (and as expected with) size and shape dis-
tances, large scale deformations due to multiple loads can be estimated
by combining the simpler constituent ones. Bear in mind that in our
analysis few load cases are compared. As such the plane of PC1 vs
PC2 in Fig. 3 is a perfectly adequate space in which to view results
and combine deformations. As more complex analyses are undertaken,
combining many load cases, it is likely that more dimensions of the size
and shape space will be needed to represent the range of deformations
they produce, and, as such, vector additions to combine loads will need
to take account of the full dimensionality, by using all PCs.

Our analyses provide some insights into modelling and the function
of the third trochanter in the armadillo. In particular it was not possible
to work with the full 3D geometry of the femur because imaging res-
olution was inadequate to accurately segment cancellous bone detail,
although the medullary cavity could be reconstructed. This situation is
likely to be much worse in fossils where matrix will limit image seg-
mentation with the result that solid models will be required. We there-
fore assessed the impact of working with a solid model rather than one
with a hollow representing themedullary cavity. The results are encour-
aging in that the solid model behaves very like the hollow; the overall
pattern of strains is very similar (Fig. 2 and 4). In the GM analyses
(Fig. 3 and 5), the solid model deforms along the same trajectory but is
a little stiffer than the hollow model. This is likely because the deform-
ations that have arisen from our loading scenarios consist in the main of
pure bending of the shaft. Because bending resistance depends on the
second moment of area, which in the case of cylinders depends on the
square of the distance of material from the neutral axis (see Lieberman
et al. 2004 for a straightforward account), adding more material inside
the bone does not have a significant impact on bending resistance. The
situation would likely be different for pure compressive loads, where
cross sectional area is relevant. With regard to the impact of muscles
acting on the third trochanter on “unbending” of the femoral shaft, the
results show that the head force produces bending in the femoral shaft,
and that the action of abductor muscles acting on the greater trochanter
increases this bending (Fig. 2, 3 and 4). We have demonstrated that
muscles pulling on the third trochanter can counter this bending (Fig. 4
and 5). Fig. 5 also demonstrates that third trochanter loads (A-C) alone
bend the femoral model in the opposite direction to head and greater
trochanter loads, and that this still occurs to varying degree over the
full range of possible T3 muscle force directions.

Using GM methods to analyse deformations of landmark configur-
ations arising from FEA, provides an account of deformation that is
complementary, but by no means substitutes for strain based analyses.
It leads to understanding and visualisation of larger scale aspects of de-
formation, but does not inform in relation to likely sites of failure of the
bony tissue.

We have only considered how size and shape analyses might be ap-
plied to different loadings of the same bone but a common situation in-
volves comparison of the effects of applying the “same” loadings to dif-
ferent bones. We have recently published such a comparison between
the armadillo (body mass 3̃ kg) femur described in this study and the
femur of its giant extinct relative the 300 kg glyptodont (Milne and
O’Higgins, 2012). Our approach was to use forces that produced sim-
ilar strains and large scale degrees of bending in each and then to com-
bine the coordinate data in a single size and shape analysis in order to
compare large scale bending and “unbending”. This was done by first
scaling translating and rotating (GPA) equivalent landmark configur-
ations from each bone to register the load cases for each model. The
differences between the coordinates of the landmarks in each loaded
state and the unloaded model, were then added to the mean unloaded
model shape for visualisation and the results were rescaled according
to the ratio of centroid sizes between loaded and unloaded to “restore”
size changes due to loading. The resulting coordinates were then sub-
mitted to a size and shape PCA of both femora. The finding was that in
both animals a similar unbending effect is observed but this is greater

when the third trochanter is more distal. Such analyses open up the
possibility of comparing the effects of loading among different speci-
mens and of investigating covariations between loading response and
other variables (e.g. skeletal form, ecology, phylogeny, etc).

There is a need for proper mathematical, engineering and statist-
ical development of the approaches outlined in this paper but with this,
and combined with the use of warping approaches to model building
(O’Higgins et al., 2011, 2012; Parr et al., 2012; Pierce et al., 2008;
Sigal et al., 2008; Sigal et al, 2010; Stayton, 2009), combinations of
FEA, GM and modern imaging techniques should eventually lead to
new analyses that experiment with and take account of variations in
form and loading and so provide novel insights into how skeletal form
relates to function, ecology and evolution.
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